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Abstract We consider a system of trapped spinless bosons interacting with a repulsive po-
tential and subject to rotation. In the limit of rapid rotation and small scattering length,
we rigorously show that the ground state energy converges to that of a simplified model
Hamiltonian with contact interaction projected onto the Lowest Landau Level. This effective
Hamiltonian models the bosonic analogue of the Fractional Quantum Hall Effect (FQHE).
For a fixed number of particles, we also prove convergence of states; in particular, in a
certain regime we show convergence towards the bosonic Laughlin wavefunction. This is
the first rigorous justification of the effective FQHE Hamiltonian for rapidly rotating Bose
gases. We review previous results on this effective Hamiltonian and outline open problems.

Keywords Bose-Einstein condensation · Landau levels · Scattering length · Quantum Hall
effect

1 Introduction

A fundamental characteristic of trapped Bose gases is their response to rotation [11, 15].
When the angular velocity � becomes large, a transition from a condensed regime to a
highly correlated, uncondensed, phase is expected. The behavior of the system then has
certain features similar to the Fractional Quantum Hall Effect that is observed in supercon-
ductors submitted to a magnetic field. For rotating Bose gases, this regime has not yet been
observed experimentally, the corresponding value of � being unattainable at present. Never-
theless, there has been a lot of interest in the theoretical understanding of this phenomenon
in the literature (see, e.g., [11] for a recent review).
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In this paper we present a rigorous study of such a Bose system with a generic repulsive
interaction potential. We show that in a certain limit, the Hamiltonian of the system can be
replaced by a simplified effective Hamiltonian with a contact interaction, projected onto the
Lowest Landau Level (LLL). This simplified model has been extensively used in the physics
literature [13–15, 29, 30, 32, 36]. We also prove that in the same limit, the true ground
state of the system converges to the ground state of the model Hamiltonian. In a certain
parameter regime, our analysis provides a rigorous derivation of the bosonic equivalent of
the well-known Laughlin state [20].

Let us consider N interacting spinless bosons submitted to a rotation around the x3 axis
and a harmonic trapping potential. Denoting �x = (x1, x2, x3) ∈ R

3, the Hamiltonian of the
system in the rotating frame is given by

N∑

j=1

[ | �pj |2
2m

+ m

2

(
ω2

⊥
(|x1

j |2 + |x2
j |2

) + ω2
‖|x3

j |2
) − ��e3 · �Lj

]
+

∑

1≤j<k≤N

Wa(�xj − �xk). (1)

Here �L = �x× �p is the angular momentum, �e3 = (0,0,1), m is the mass of the bosons, and ω⊥
and ω‖ are the trap frequencies. The interaction potential Wa is assumed to be non-negative,
i.e., purely repulsive, and to have scattering length a (see [24] for a proper definition of the
scattering length). It is natural to introduce a fixed potential W with scattering length 1 and
write Wa(x) = a−2W(x/a). For convenience we will assume that the angular velocity � is
nonnegative. The above Hamiltonian acts on the space of permutation-symmetric square-
integrable N -body wavefunctions.

The Hamiltonian (1) is stable (i.e., bounded from below) only when � ≤ ω⊥. The regime
of rapid rotation that will be of special interest to us corresponds to the case when � is very
close to the maximal possible speed ω⊥, i.e.,

ω := ω⊥ − �

ω⊥
� 1.

To simplify certain expressions, we will work with an isotropic harmonic potential, ω⊥ =
ω‖. Our results would hold equally well when ω⊥ �= ω‖ but ω‖/ω⊥ ≥ ε > 0. Similarly, a
non-harmonic confinement potential in the x3 direction could be used.

It is convenient to chose units such that m = � = ω⊥ = 1. Introducing �A(�x) =
(−x2, x1,0) and completing the square, our Hamiltonian (1) can be written as

HN
ω,a :=

N∑

j=1

[ | �pj − �A(�xj )|2 + |x3
j |2 − 3

2
+ ω�e3 · �Lj

]
+

∑

1≤j<k≤N

Wa(�xj − �xk). (2)

The kinetic energy term of this Hamiltonian is equivalent to that of a charged particle in
a constant magnetic field �B = �∇ × �A. The spectrum of (| �p − �A(�x)|2 + |x3|2)/2 is purely
discrete, its eigenvalues being 3(j +1/2) for j = 0,1, . . . . They are all infinitely degenerate.
In the definition (2) of our Hamiltonian we have subtracted the unimportant ground state
energy 3/2 of the kinetic term.

When the speed of rotation � is not too close to ω⊥ and the Bose gas is sufficiently dilute,
the ground state of (2) is known to exhibit Bose-Einstein condensation, with condensate
wavefunction described by ground states of the Gross-Pitaevskii functional [18, 33]

E GP(ϕ) =
〈
ϕ,

(
| �p − �A(�x)|2 + |x3|2 − 3

2
+ ω�e3 · �L

)
ϕ

〉
+ g

2

∫

R3
|ϕ|4, (3)
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where g = 4πNa. In the limit N → ∞ with 0 < ω ≤ 1 and g > 0 fixed this was proved
in [21, 22].

The properties of the Gross-Pitaevskii ground state in the rapidly rotating regime ω → 0
were intensely studied in the literature, both from a numerical [3, 9, 12] and an analytical
[1, 5] point of view. As the speed of rotation increases, more and more vortices appear and
the wavefunction acquires a higher angular momentum. The location of these vortices is
conveniently studied in the Lowest Landau Level (LLL) approximation where one restricts
ϕ to lie in the null space of | �p − �A(�x)|2 + |x3|2 − 3. This LLL approximation is justified [2]
when ω � 1 and gω � 1, the number of vortices being then proportional to

Nv ∼
√

g

ω
∼

√
Na

ω
.

The Gross-Pitaevskii functional (3) is expected to be an accurate description of the
ground state of the many-body system (2) provided the number of vortices is much smaller
than the number of particles in the system, i.e., when

a

Nω
� 1. (4)

Within the LLL approximation, this was recently shown in [27] to be indeed the case. In
terms of the filling factor ν = N2/(2Ltot) [14], (4) corresponds to ν � 1.

When a/(Nω) is not small, a completely different regime is expected. Evidence of
strongly correlated states was found in exact diagonalization studies of small systems. As
the rotation frequency � is increased from 0 to its upper limit ω⊥, the ground state encoun-
ters a series of transitions between certain values of the angular momentum. The behavior
of the system is similar to the Fractional Quantum Hall Effect in fermionic systems, and
usually modeled by an effective Hamiltonian with contact interaction in the LLL. The rigor-
ous derivation of this effective Hamiltonian for Bose gases with generic repulsive two-body
interactions is the main purpose of this paper.

2 Main Results

2.1 Derivation of the Effective Hamiltonian on the LLL

The ground state energy in the bosonic sector is given by

EN(ω,a) := infσ∨N
1 L2(R3,C)

(
HN

ω,a

)
(5)

where
∨N

1 L2(R3,C) denotes the symmetric tensor product and HN
ω,a was defined above

in (2).
We will compare the ground state energy of the above Hamiltonian (2) with the simplified

model consisting in restricting the wavefunction to the N -body Lowest Landau Level (LLL)
and replacing Wa by 4πa times a contact interaction potential. The LLL is defined as the
ground state eigenspace of the kinetic part of the operator (2) at ω = 0. This subspace of∨N

1 L2(R3,C) reads
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HN :=
{
	(�x1, . . . , �xN) = F(x1

1 + ix2
1 , . . . , x

1
N + ix2

N)e−∑N
i=1

|�xi |2
2 ∈ L2(R3N) :

(z1, . . . , zN) �→ F(z1, . . . , zN) is holomorphic and symmetric

}
(6)

where we denote �x = (x1, x2, x3) ∈ R
3 as before. We will use the notation z = x1 + ix2 ∈ C

and we will sometimes identify it with (x1, x2) ∈ R
2. For any 	 ∈ HN , we have by definition

N∑

j=1

[ | �pj − �A(�xj )|2 + |x3
j |2 − 3

2

]
	 = 0.

The ground state energy of the simplified effective model in the LLL is given by

ELLL
N (ω,a) := inf

	∈HN ,‖	‖=1

〈
	,

(
ω

N∑

j=1

�e3 · �Lj + 4πa
∑

1≤i<j≤N

δ(�xi − �xj )

)
	

〉
. (7)

Note that although it makes no sense to use a delta potential in the original Hilbert space,
functions in the space HN are all smooth, hence

〈	,δ(�x1 − �x2)	〉 =
∫

· · ·
∫

|	(�x2, �x2, �x3, . . . , �xN)|2dx2 · · ·dxN

makes perfect sense and defines a bounded selfadjoint operator. As we will discuss in the
next section, for any ω ≥ 0 and a ≥ 0 there exists a ground state 	 ∈ HN for the problem (7).

We emphasize that (7) is not obtained by restricting HN
ω,a to the LLL. For small scattering

length a such a restriction would lead to a similar expression but with the wrong prefactor∫
Wa instead of 4πa in front of the δ-interaction (see Remark 1 below). In order to obtain

the scattering length, it is important to note that the LLL restriction is unphysical on length
scales much smaller than the effective “magnetic length”, which is 1 in our units. If a � 1,
the scattering process is unaffected by the rotation of the system and hence leads to the
scattering length as an effective coupling constant.

Our main result is the following.

Theorem 1 (Validity of effective LLL model) Let W be a nonnegative radial function
such that

∫
|�x|>R

W(�x)dx < ∞ for some R > 0, with scattering length 1. We define Wa :=
a−2W(·/a) and

κ := a

Nω
. (8)

(i) Upper bound. Assume that η := κ1/4aN1/2 ≤ 1. For κ−3/2a < C−1 one has

EN(ω,a) ≤ ELLL
N (ω,a)

(
1 − Caκ−3/2

)−1

×
(

1 + Cη

min{1, κN2}
[

1 + κ−3/4

√
N

+ 1

η

∫

|�x|≥(2/η)3/4
W

])
(9)

for some universal constant C > 0.
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(ii) Lower bound. Let ξ = min{1, κa−2/3}. Then

EN(ω,a) ≥ ELLL
N (ω,a)

(
1 − C

[
Na1/3

ξ
+ a1/9ξ

]
− 1

4π

∫

|�x|≥ξ1/6a−8/9
W

)
(10)

for some universal constant C > 0.

What Theorem 1 says is that when κ stays away from zero and when a is small enough
(depending on the particle number N ), then one can replace the problem of minimizing HN

ω,a

with a generic interaction of scattering length a by the study of a simplified Hamiltonian
acting on the LLL, with a contact interaction of strength 4πa. The latter model has some
very specific features which we will recall in the next section. There we shall also see that κ

is related to the inverse filling factor, hence the regime κ = O(1) is of particular relevance.
Note that a → 0 for fixed κ implies, in particular, that ω → 0.

A simple corollary of Theorem 1 is that for fixed N and fixed κ ,

lim
a→0

EN(ω = a/(Nκ), a)

ELLL
N (ω = a/(Nκ), a)

= 1.

We conjecture that this convergence is in fact uniform in N , but Theorem 1 does not show
this. Although N is allowed to go to infinity as a goes to zero, our error bounds are only
small if it does not increase too fast.

For fixed κ , the leading order correction in our upper bound is of the order aN1/2 as long
as W decays at least as |�x|−3−4/3 at infinity; it is (aN1/2)3ε/4 if W decays as |�x|−3−ε for
0 < ε < 4/3 instead. This follows from the fact that, for small η, 1

η

∫
|�x|≥(2/η)3/4 W ∼ η3ε/4−1

if W decays as |�x|−3−ε for ε > 0.
The error bounds in the lower bound are significantly worse. For fixed κ the leading error

term is Na1/3. It remains a challenging open problem to derive bounds that display a better
N dependence. These will require a better understanding of the FQHE regime for large N .

The proof of Theorem 1 uses several previous ideas [24]. The upper bound requires a
two-scale trial function, as suggested first by Dyson in [16], in order to obtain the scattering
length from Wa . The fact that the ground state in HN for (7) is not very well known (contrar-
ily to the condensed Gross-Pitaevskii case) is an important obstacle, however. As usual, the
lower bound is the hardest part and consequently our conditions on a are more restrictive.

The proof of Theorem 1 will be given in Sect. 3.2. More general upper and lower bounds
on EN(ω,a) are stated in (28)–(29) and (43), respectively.

2.2 Effective Hamiltonian on the LLL and Convergence of States

The result of Theorem 1 can be extended to obtain information not only on the ground
state energy but also on the corresponding eigenfunctions. Before we state our result on the
convergence of ground states in the limit ω → 0 and a → 0 with N fixed, we recall in this
section several important properties of the effective Hamiltonian on the LLL.

It is convenient to introduce the Bargmann space [7]

BN :=
{
F : C

N → C
N holomorphic and symmetric :

∫

C

· · ·
∫

C

|F(z1, . . . , zN)|2e−∑N
j=1 |zj |2

dz1 · · ·dzN < ∞
}
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endowed with the scalar product

〈F,G〉BN
:=

∫

C

dz1 · · ·
∫

C

dzNF(z1, . . . , zN)G(z1, . . . , zN)e
−∑N

j=1 |zj |2
,

and its associated norm. It can easily be checked that if F ∈ BN then the function 	 defined

by 	 = π−N/4e
−∑N

j=1 |�xj |2/2
F ∈ HN satisfies ‖	‖L2(R3N ) = ‖F‖BN

and

N∑

j=1

[ | �pj − �A(�xj )|2 + |x3
j |2 − 3

2
+ ω�e3 · �Lj

]
	 = ω

⎛

⎝
N∑

j=1

zj ∂zj
F

⎞

⎠ e−∑N
i=1

|�xi |2
2 . (11)

The delta interaction potential is defined on BN as follows:

⎛

⎝
∑

i<j

δij

⎞

⎠F := 1

(2π)3/2

∑

i<j

F

(
z1, . . . ,

zi + zj

2
, . . . ,

zi + zj

2
, . . . , zN

)
. (12)

The prefactor has been chosen to ensure that

〈F, δ12F 〉B2
=

∫

R3
|	(�x, �x)|2dx.

It can easily be seen that 0 ≤ δ12 ≤ (2π)−3/2, hence δ12 is a bounded self-adjoint operator on
B2. The model Hamiltonian acting on BN is defined as

H̃N
ω,a := ω

N∑

j=1

zj ∂zj
+ 4πa

∑

1≤i<j≤N

δij (13)

and its ground state energy equals the LLL energy (7) introduced in the previous section:

ELLL
N (ω,a) := infσBN

(H̃N
ω,a).

We introduce, for convenience, the notation

LN :=
N∑

j=1

zj ∂zj
and IN :=

∑

1≤i<j≤N

δij

for the total angular momentum and the contact interaction potential in the LLL, respec-
tively. Because of rotation invariance of the interaction these two operators commute on
BN , i.e., [LN, IN ] = 0. Hence the ground state energy ELLL

N (ω,a) of our Hamiltonian
H̃N

ω,a = ωLN + 4πaIN is obtained by looking at the joint spectrum of IN and LN . If we
denote by IN(L) the lowest eigenvalue of the operator IN in the sector of total angular
momentum L, we get

ELLL
N (ω,a) = inf

L∈N

{
ωL + 4πaIN(L)

}
.

Multiplying any common eigenstate of LN and IN by the center of mass
∑N

j=1 zj , one sees
that σ(IN)�(LN =L) ⊂ σ(IN)�(LN =L+1). Therefore, L �→ IN(L) is nonincreasing.
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Fig. 1 General form of the joint spectrum of IN/N and LN/N2. The dashed curve is the graph of
� �→ IN (�N2)/N , whereas the solid one is the yrast curve. Points of the joint spectrum lying on the yrast
curve are emphasized by thick dots. This figure represents only a sketch, numerical studies for the joint
spectrum of IN and LN can be found in [6, 35, 40]

A sketch of the general form of the joint spectrum of IN and LN is shown in Fig. 1. The
possible ground states for H̃N

ω,a are those whose values of LN and IN lie on the so-called
yrast curve1 [31] which is the graph of the convex hull of L �→ IN(L). We can write

H̃N
ω,a = 4πNa

(
1

4πκ

LN

N2
+ IN

N

)

where, as before κ = a/(Nω). Thus the ground state that will be picked by the system only
depends on the value of κ . It jumps from one state to another when κ is varied. The FQHE
regime corresponds to κ ∼ 1 in which case LN ∼ N2 and IN ∼ N , hence ELLL

N (ω,a) ∼ Na.
The null space of IN is obviously given by the set of functions

⎧
⎨

⎩F(z1, . . . , zN)
∏

1≤i<j≤N

(zi − zj )
2

∣∣∣∣∣F holomorphic and symmetric

⎫
⎬

⎭ .

1In the literature the graph of L �→ IN (L) is sometimes called the yrast curve. We keep this name for the

convex hull which contains all the possible ground states of H̃N
ω,a .
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Fig. 2 Value of the angular
momentum of the ground state(s)
of H̃N

ω,a , depending on the value
of κ . The Laughlin state is the
unique ground state for all
κ > κ1(N). The constant
function is the unique ground
state for all 0 ≤ κ < κjmax (N)

The function which has the lowest angular momentum among these functions (hence lies on
the yrast curve) is the (bosonic) Laughlin wavefunction

FN
Lau(z1, . . . , zN) = kN

∏

1≤i<j≤N

(zi − zj )
2

where kN is a normalization factor. It satisfies

LNFN
Lau = N(N − 1)FN

Lau.

The Laughlin wavefunction is the unique ground state of H̃N
ω,a as soon as κ > κ1(N) :=

−1/(4πd1(N)), where d1(N) is the (unknown) left derivative at � = 1 − 1/N of the convex
hull of � �→ IN(N2�)/N . The filling factor [14] of the Laughlin function is given by

νLau = N2

2〈FN
Lau, LNFN

Lau〉
= 1

2(1 − 1/N)

N→∞−−−→ 1

2
.

In general, the convex hull ĨN of the function L �→ IN(L) is piecewise linear and we may
define similarly κ1(N) > κ2(N) > · · · > κk(N) by the formula κj (N) := −1/(4πdj (N))

where d1(N) > d2(N) > · · · > dk(N) are the successive left derivatives of the function � �→
ĨN (N2�)/N . To any κj (N) we can associate a unique total angular momentum Lj(N) which
is the highest among states lying on the yrast curve and having a left derivative equal to
dj (N). The corresponding eigenspace is easily seen to be the ground state eigenspace of
H̃N

ω,a when κ ∈ (κj+1(N), κj (N)). When κ = κj (N), the ground state eigenspace is the one
containing all states lying on the yrast line with slope dj (N). It does not have a unique
angular momentum. These statements are illustrated in Fig. 2.

The only state having L = 0 is the condensed state F(z1, . . . , zN) = 1, hence IN(0) =
(2π)−3/2N(N − 1)/2. Also IN(1) = (2π)−3/2N(N − 1)/2, with unique state F(z1, . . . ,

zN) = ∑N

i=1 zi . Moreover, it is well known [8, 19, 32] that

IN(L) = 1

2(2π)3/2
N

(
N − 1 − 1

2
L

)
for 2 ≤ L ≤ N. (14)

For the proof, one notes that δ12 has eigenvalues 0 and (2π)−3/2 and commutes with the
relative angular momentum L12 = (z1 − z2)(∂z1 − ∂z2)/2; in fact, δ12 is nonzero only on
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the subspace where L12 = 0. On symmetric functions of z1 and z2, the smallest non-zero
eigenvalue of L12 is 2, hence (2π)3/2δ12 ≥ 1 − L12/2. Summing over all pairs we get

(2π)3/2
∑

i<j

δij ≥ N(N − 1)

2
− N LN

4
+ 1

4

(
∑

i

zi

)(
∑

i

∂zi

)
.

The very last term is non-negative, which yields (14) as a lower bound. Finally, one checks
that for 2 ≤ L ≤ N the lower bound is, in fact, an equality for the states S(z1 −zCM) · · · (zL −
zCM), where S denotes symmetrization and zCM := N−1

∑N

i=1 zi .
No exact formula for IN(L) is known if L > N . For large N and L � N2 the yrast line

was studied in [27], where it is proved that in this limit the Gross-Pitaevskii energy becomes
exact. The result in [27] implies that in this regime the convex hull of IN(L) is proportional
to N3/L.

Very little is known about the yrast curve for L ∼ N2, in particular concerning lower
bounds. Upper bounds have been derived using certain trial states (Pfaffian, composite
fermions [13, 34, 35]) which have been shown numerically to have a large overlap with
(some of) the true eigenstates of the yrast curve, at least for small N . A rigorous under-
standing of the properties of the true eigenstates is still missing, however. It particular, it
remains an open problem to investigate whether lim infN→∞ d1(N) > 0. This would imply
that the yrast curve has a discontinuous derivative at the Laughlin state. It would also show
a certain robustness of the Laughlin state, in the sense that this state is the ground state for
fixed κ > κ1 := lim supN→∞ κ1(N), independently of the particle number N .

This concludes our review of the properties of the effective Hamiltonian (13). To state
our last result, we will denote by PN(κ) the (finite dimensional) orthogonal projector in
L2(R3N) on the ground eigenspace of the operator (4πκ)−1 LN/N2 + IN/N , multiplied by

π−N/4e
−∑N

j=1 |�xj |2/2. This orthogonal projector is constant for all κ ∈ (κj+1(N), κj (N)). For
κ > κ1(N), it is just the projector on the N -body Laughlin function

PN(κ) = |	N
Lau〉〈	N

Lau|
where

	N
Lau(�x1, . . . , �xN) = kNπ−N/4

∏

1≤i<j≤N

(zi − zj )
2e−∑N

k=1 |�xk |2/2.

The following theorem is a rather straightforward consequence of our proof of Theorem 1.

Theorem 2 (Convergence of States and Fractional Quantum Hall Effect) Let κ > 0 and
N ≥ 2 fixed, and denote by 	N

ω,a any chosen sequence of ground states of the Hamiltonian

HN
ω,a in

∨N

1 L2(R3). Then we have

lim
a→0

a/(Nω)→κ

∥∥	N
ω,a − PN(κ)	N

ω,a

∥∥ = 0. (15)

In particular, if κ > κ1(N), one has 	N
ω,a → 	N

Lau when a → 0 and a/(Nω) → κ , up to a
correct choice of a phase for 	N

ω,a .

Theorem 2 shows that the ground state of any system of N spinless trapped bosons with
repulsive interactions of scattering length a is, for small enough a and rotation speed close
to the critical one, well approximated by the ground state of the effective Hamiltonian (13)
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on the LLL. In particular, the states are highly correlated and exhibit a bosonic analogue
of the FQHE, with transitions between certain values of the angular momentum coinciding
with discontinuities of the derivative of the yrast curve.

The proof of Theorem 2 will be given in Sect. 3.3. As will be obvious from the method
of proof, both Theorems 1 and 2 can be extended to low-lying excited energy eigenvalues
and their corresponding eigenfunctions as well. The corresponding analysis is similar to
previous studies of the effective one-dimensional behavior of Bose gases in highly elongated
traps [39], and we shall not give the details here.

3 Proofs

3.1 Preliminaries

In this subsection we shall gather some useful preliminary results which will be needed in
the rest of the proof. We recall that δij was defined in (12). Similarly the three-body delta
interaction can be defined on B3 as

(δ123F) (z1, z2, z3) := 1

(
√

3π)3
F

(
z1 + z2 + z3

3
,
z1 + z2 + z3

3
,
z1 + z2 + z3

3

)
(16)

where the prefactor was chosen such that

〈F, δ123F 〉B3
=

(∫

R

e−t2
dt

)−3 ∫

R

dx

∫

C

dz|F(z, z, z)|2e−3|z|2−3x2
.

It defines a bounded self-adjoint operator on B3. In fact,

δ123 ≤
√

2

3π3
δ12. (17)

By definition all functions in HN are smooth. A way to quantify their regularity was
provided by Carlen in [10]. We state it in the following lemma.

Lemma 1 (An inequality of Carlen [10]) For any p ∈ N, there exists a constant Cp such
that for any holomorphic function f ∈ B1

∀z ∈ C,

∣∣∣∣
∂pf

∂zp
(z)

∣∣∣∣
2

e−|z|2 ≤ Cp(1 + |z|2p)‖f ‖2
B1

. (18)

Proof The proof is a consequence of the Cauchy-Schwarz inequality and the following well-
known coherent state representation [5, 7, 17] for functions f in the Bargmann space B1:

f (z) = π−1
∫

C

f (ξ)ϕξ (z)e
−|ξ |2dξ (19)

where ϕξ (z) = eξz. �

Using the smoothness of functions in the LLL, one can control any interaction potential
by a contact interaction, up to an error. This was done first in [4].
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Lemma 2 (Controlling interaction potentials in the LLL) Let F ∈ BN and 	(�x1, . . . , �xN) :=
π−N/4F(z1, . . . , zN)e

−∑N
j=1 |�xj |2/2 ∈ HN . Let g ∈ L1(R3) be non-negative and radial. Then

we have
〈
	,

(
∑

1≤i �=j≤N

g(�xi − �xj )

)
	

〉

L2(R3N )

≤
(∫

R3
g

)〈
F,

(
∑

1≤i �=j≤N

δij

)
F

〉

BN

+ N2C

(∫

R3
g(�x)

|�x|4
1 + |�x|4 dx

)
‖F‖2

BN
, (20)

and
〈
	,

(
∑

1≤i �=j �=k≤N

g(�xi − �xj )g(�xj − �xk)

)
	

〉

L2(R3N )

≤
(∫

R3
g

)2
〈
F,

⎛

⎝
∑

1≤i �=j �=k≤N

δijk

⎞

⎠F

〉

BN

+ N3C

(∫

R3
g(�x)

|�x|2
1 + |�x|2 dx

)2

‖F‖2
BN

(21)

for a universal constant C > 0.

Proof An inequality similar to (20) was derived before in [4]. We shall only write the proof
of (20) for N = 2 (the general case is then obtained by summing over pairs). We shall omit
the proof of (21) which is analogous.

Defining G(u,v) = F(u+v√
2
, u−v√

2
), we have

〈	,g(�x1 − �x2)	〉 = 1

π

∫

R3

∫

R3
g(�x1 − �x2)|F(z1, z2)|2e−|�x1|2−|�x2|2dx1 dx2

=
∫

C

∫

C

g̃(
√

2|v|)|G(u,v)|2e−|u|2−|v|2dudv, (22)

where we have introduced

g̃(|z|) := 1

π

∫

R

∫

R

g(z, x3
1 − x3

2 )e
−|x3

1 |2−|x3
2 |2dx3

1 dx3
2

which is obviously radial, i.e., depends only on |z|.
We split the v integral in (22) into two parts, corresponding to |v| ≤ 1 and |v| ≥ 1, re-

spectively. Consider first the case |v| ≤ 1. Using the fact that G(u, ·) is even because F is
symmetric, a Taylor expansion yields

G(u,v) = G(u,0) + v2
∫ 1

0
(1 − t)

∂2G

∂v2
(u, tv) dt.

By the radiality of g̃ the cross term vanishes when integrating over angles, and hence

∫

|v|≤1
g̃(

√
2|v|)|G(u,v)|2e−|v|2dv
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=
∫

|z|≤1
g̃(

√
2|v|)|G(u,0)|2e−|v|2dv

+
∫

|v|≤1
g̃(

√
2|v|)|v|4

∣∣∣∣
∫ 1

0
(1 − t)

∂2G

∂v2
(u, tv) dt

∣∣∣∣
2

e−|v|2dv. (23)

We integrate this identity against e−|u|2du. The first term becomes
(∫

|z|≤1/
√

2
g(z, x3)e−|�x|2/2dx

)
〈F, δ12F 〉B2

≤
(∫

R3
g

)
〈F, δ12F 〉B2

.

With the aid of Carlen’s inequality (18), the second term is bounded above by

C

∫

|z|≤1/
√

2
g(z, x3)|z|4 dx ‖F‖2

B2
≤ C ′

∫

R3
g(�x)

|�x|4
1 + |�x|4 dx ‖F‖2

B2
.

Finally, for |v| ≥ 1 we shall use again (18), this time for p = 0, to conclude that
∫

C

du

∫

|v|≥1
dvg̃(

√
2|v|)|G(u,v)|2e−|u|2−|v|2 ≤ C

∫

|z|≥1/
√

2
g(z, x3)dx ‖F‖2

B2

≤ C ′
∫

R3
g(�x)

|�x|4
1 + |�x|4 dx ‖F‖2

B2
.

This completes the proof. �

Remark 1 Although we will not need it, we note that (23) also yields a lower bound:

〈	,g(�x1 − �x2)	〉H2
≥

(∫

R3
g(�x)e− |�x|2

2 dx

)
〈F, δ12F 〉B2

,

where we have used the same notation as in Lemma 2. Combined with (20) this shows
that the restriction of the operator ε−3g((�x1 − �x2)/ε) to the LLL converges to (

∫
R3 g)δ12 as

ε → 0.

It will be important to have some a priori bounds on the ground state energy of the
effective Hamiltonian (13). The following is certainly not optimal but it has the merit of
being simple.

Lemma 3 (Simple Bounds on ELLL
N (ω,a)) We have, for κ = a/(Nω) and N ≥ 2,

aNC min

{
1

κN
,N

}
≤ ELLL

N (ω,a) ≤ aN min

{
1

κ
,

√
2

π
N

}
. (24)

Proof The upper bound is obtained by taking as trial states the Laughlin function and the
constant function, respectively. For the lower bound, we note that

∑

1≤i<j≤N

(
ω

N − 1
(Lzi

+ Lzj
) + 4πaδij

)

≥ c min {ωN/2,2πaN(N − 1)} ≥ c

2
min

{
κ−1a, aN2

}
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where c = infσB2(L1 + L2 + δ12) > 0. �

Except for the prefactor, the upper bound is expected to be sharp. In other words, the
lower bound should hold without the factor 1/N multiplying κ−1, for an appropriate con-
stant C. This remains an open problem, however.

3.2 Proof of Theorem 1

Step 1: Upper Bound We start by proving the upper bound, using the variational principle.
The main difficulty is to get the scattering length in front of the interaction potential. As
suggested first by Dyson in [16], this is done by multiplying a trial state � of HN by a
correlated function S accounting for the short scale structure of the ground state. Compared
to previous similar arguments in [25, 37], a new complication comes from the fact that
the trial state � in HN is not a simple product function, but itself already a (possibly) highly
correlated state of which little is known. Fortunately, the information that � ∈ HN combined
with simple bounds on ELLL

N (ω,a) will allow us to get the desired upper bound.
Let FN,ω,a ∈ BN be a normalized ground state for the LLL Hamiltonian H̃N

ω,a defined
in (13), which is a common eigenvector of LN and IN . We consider the following trial state:

	N,ω,a := SN,a�N,ω,a (25)

where

SN,a(�x1, . . . , �xN) :=
∏

1≤i<j≤N

fa(|�xi − �xj |)

for some 0 ≤ fa ≤ 1 which will be defined later, and

�N,ω,a(�x1, . . . , �xN) := π−N/4FN,ω,a(z1, . . . , zN)e−∑N
i=1

|�xi |2
2 .

Note that the norm of �N,ω,a ∈ L2(R3N) equals the norm of FN,ω,a ∈ BN . We write

HN
ω,a =

N∑

j=1

(hω)j +
∑

i<j

Wa(�xi − �xj )

where

hω = | �p − �e3 × �x|2
2

+ |x3|2
2

− 3

2
+ ω�e3 · �L. (26)

We shall also use the notation HN
ω,0 = ∑

j (hω)j for short. Using the fact that fa is real, we
can argue as in [37, (4.64)] to get the identity

〈
	N,ω,a,H

N
ω,0	N,ω,a

〉 =
N∑

j=1

∫ | �∇j SN,a|2
2

|�N,ω,a |2 + Re
〈
S2

N,a�N,ω,a,H
N
ω,0�N,ω,a

〉
.

Using (11) and that FN,ω,a is a normalized eigenvector of LN , we have

HN
ω,0�N,ω,a = ω

〈
FN,ω,a, LNFN,ω,a

〉
BN

�N,ω,a,
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hence

〈
	N,ω,a,H

N
ω,0	N,ω,a

〉 =
N∑

j=1

∫ | �∇j SN,a |2
2

|�N,ω,a |2

+ ∥∥	N,ω,a

∥∥2 〈
�N,ω,a,H

N
ω,0�N,ω,a

〉
.

We compute

�∇kSN,a =
∑

i �=k

f ′
a(|�xk − �xi |) �xk − �xi

|�xk − �xi |
∏

1≤m<n≤N
{m,n}�={i,k}

f (|�xm − �xn|).

Using 0 ≤ f ≤ 1 we therefore get

1

2

N∑

k=1

| �∇kSN,a|2 ≤
∑

1≤i<j≤N

f ′
a(|�xi − �xj |)2 + 1

2

∑

i �=j �=k

f ′
a(|�xi − �xj |)f ′

a(|�xk − �xj |).

We finally deduce that

〈
	N,ω,a,H

N
ω,a	N,ω,a

〉 ≤ ∥∥	N,ω,a

∥∥2 〈
�N,ω,a,H

N
ω,0�N,ω,a

〉

+
〈
�N,ω,N,a,

(
∑

1≤i<j≤N

[
(f ′

a)
2 + Waf

2
a

]
(|�xi − �xj |)

)
�N,ω,N,a

〉

+ 1

2

〈
�N,ω,N,a,

(
∑

i �=j �=k

f ′
a(|�xi − �xj |)f ′

a(|�xk − �xj |)
)

�N,ω,N,a

〉
.

The next step is to bound the terms on the right hand side of the previous inequality. An
essential tool is the inequality (20) of Lemma 2 which relates, on the LLL, the interaction
of a smooth potential

∑
i<j g(�xi − �xj ) with that of the contact interaction with coefficient∫

R3 g. As we will see, for a correct choice of fa , we will have
∫ [(f ′

a)
2 + Waf

2
a ] � 4πa, as

desired. Let ga := (f ′
a)

2 + Wa(fa)
2. Using Lemma 2 as well as the bound (17), we obtain

〈
	N,ω,a,H

N
ω,a	N,ω,a

〉

≤ ELLL
N (ω,a)

∥∥	N,ω,a

∥∥2

+
(∫

R3
ga − 4πa

∥∥	N,ω,a

∥∥2 +
√

2

3π3
N

(∫
f ′

a

)2
)

〈
FN,ω,a, INFN,ω,a

〉
BN

+ CN2
∫

R3
ga(�x)

|�x|4
1 + |�x|4 dx + CN3

(∫

R3
f ′

a(|�x|) |�x|2
1 + |�x|2 dx

)2

.

For an upper bound, we can use 〈FN,ω,a, INFN,ω,a〉BN
≤ ELLL

N (ω,a)/(4πa), hence

〈
	N,ω,a,H

N
ω,a	N,ω,a

〉 ≤ ELLL
N (ω,a)

4πa

(∫

R3
ga +

√
2

3π3
N

(∫
f ′

a

)2
)
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+ CN2
∫

R3
ga(�x)

|�x|4
1 + |�x|4 dx + CN3

(∫

R3
f ′

a(|�x|) |�x|2
1 + |�x|2 dx

)2

.

Let us now choose fa . As in [24, 25] we take, for some b > a to be specified later,

fa(s) :=
{

ua(s)/s

ua(b)/b
if 0 ≤ s ≤ b,

1 if s ≥ b
(27)

where ua is the solution of the scattering equation

−u′′
a(s) + Wa(s)ua(s) = 0

with ua(0) = 0 and lims→∞ u′
a(s) = 1. Integrating by parts and using that 0 ≤ ua(s) ≤ s and

0 ≤ su′
a(s) − ua(s) ≤ a [24, 25] we see that

∫

R3
ga =

∫

R3
[(f ′

a)
2 + Waf

2
a ] ≤ 4πa

1 − a/b
.

By splitting the integral into a part |�x| ≤ (ab3)1/4 and |�x| ≥ (ab3)1/4, one checks that

∫

R3
ga(|�x|) |�x|4

1 + |�x|4 dx ≤ C

1 − a/b

(
a2b3 + ab4

∫

|�x|≥(b/a)3/4
W(�x)dx

)
.

Note that for a � b the second term in the last bracket is small compared to the first one if
W decays faster than |�x|−3−4/3 at infinity. We further have

∫

R3
f ′

a ≤ 4πab

1 − a/b
,

and hence
∫

R3
f ′

a(|�x|) |�x|2
1 + |�x|2 dx ≤ 4πab3

1 − a/b
.

Let us assume, for simplicity, that b ≥ 2a. Then

〈
	N,ω,a,H

N
ω,a	N,ω,a

〉 ≤ ELLL
N (ω,a)

(
1 + C

[a

b
+ Nab2

])

+ CN2a2b3

(
1 + Nb3 + b

a

∫

|�x|≥(b/a)3/4
W(�x)dx

)

for some constant C > 0. To bound the last term relative to the first one, we can use the
lower bound of Lemma 3 to conclude that

〈
	N,ω,a,H

N
ω,a	N,ω,a

〉 ≤ ELLL
N (ω,a)

(
1 + C

[
a

b
+ Nab2

+ κN2ab3

min{1, κN2}
(

1 + Nb3 + b

a

∫

|�x|≥(b/a)3/4
W(�x)dx

)])
. (28)

It remains to derive a lower bound on ‖	N,ω,a‖. Arguing as in [26] we can bound

∥∥	N,ω,a

∥∥2 =
∫

R3
· · ·

∫

R3

∏

1≤i<j≤N

fa(|�xi − �xj |)2|�N,ω,a|2
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≥ 1 −
∑

1≤i<j≤N

∫

R3
· · ·

∫

R3
(1 − f 2

a )(|�xi − �xj |)|�N,ω,a |2

≥ 1 − CN2
∫

R3
(1 − f 2

a )(|�x|) |�x|4
1 + |�x|4 dx

−
(∫

R3
(1 − f 2

a )

)〈
FN,ω,a, INFN,ω,a

〉
BN

where we have used again Lemma 2. For our choice of fa in (27), it is easy to see [24, 25]
that

∫

R3
(1 − f 2

a ) ≤ 4πab2

and hence
∫

R3
(1 − f 2

a )(|�x|) |�x|4
1 + |�x|4 dx ≤ 4πab6.

Finally, we can use Lemma 3 to bound 〈FN,ω,a, INFN,ω,a〉BN
≤ ELLL

N (ω,a)/(4πa) ≤
(2π)−3/2Nκ−1. This yields

∥∥	N,ω,a

∥∥2 ≥ 1 − CNab2

(
1

κ
+ Nb4

)
(29)

for an appropriate constant C > 0.
Combining (28) and (29), the choice b = 2κ−1/4N−1/2 leads to the desired inequality (9).

Remark 2 If we had a lower bound

ELLL
N (ω,a) ≥ cNaκ−1,

as is expected for κ � N−1, the upper bound of Theorem 1 could be somewhat improved.
In (28) min{1, κN2} could be replaced by N min{1, κN} in the denominator, and the optimal
choice of b would then be b = (κN)−1/3. The main error term would then be of the order
aκ1/3N1/3 instead of aκ1/4N1/2.

Step 2: Lower Bound As a first step, we shall replace Wa by the finite range potential
Wa,R0 = Waχ(|�x| ≤ R0) for some R0 to be chosen later. Since Wa is assumed to be non-
negative, this is legitimate for a lower bound. We denote by a(R0) the scattering length of
Wa,R0 . If R0 is large enough compared to a, we will have a(R0) � a. Indeed, let us recall
that [24]

4πa ≥ 4πa(R0) =
∫

R3
Wa,R0fa,R0 ≥

∫

R3
Wa,R0fa ≥ 4πa −

∫

|�x|≥R0

Wa (30)

where fa ≤ fa,R0 are the solutions of the zero-scattering equations corresponding to Wa and
Wa,R0 , respectively.

We continue with a lemma inspired by a method of Dyson [16]. The key idea is to replace
the “hard” interaction potential Wa by a softer one using parts of the kinetic energy, with
this softer potential being close to 4πaδ when projected to the LLL. Note that this step is
essential, it is not possible to project the original Wa to the LLL level. This would also lead
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to a δ interaction for small a, but with the wrong coupling constant
∫

Wa instead of 4πa

(see Remark 1). Compared to previous studies [22, 23, 28, 38] where a similar strategy has
been applied, the main new difficulty comes from the fact that the effective kinetic energy
h0 = (| �p − �e3 × �x|2 + |x3|2 − 3)/2 is not positive locally, i.e., on a domain with Neumann
boundary conditions, but is positive only on the whole of R

3. To circumvent this problem,
we shall rewrite 〈	,h0	〉 for 	 ∈ L2(R3) as

〈	,h0	〉 = 1

2

∫

R3
e−|�x|2 (|∂x3ψ(�x)|2 + |∂z̄ψ(�x)|2)dx (31)

with ψ(�x) = e|�x|2/2	(�x) and ∂z̄ = ∂x1 + i∂x2 . The integrand on the right side is now positive
but contains no derivatives with respect to z and is hence weaker than | �∇ψ |2. Nevertheless
we shall show in the next lemma that it is still strong enough to accomplish the goal of
replacing Wa by a softer potential for a lower bound. The resulting “potential” turns out
not be a potential in the usual sense of a multiplication operator, but rather is a non-local
operator which has the property that its projection to the LLL is proportional to a δ-function,
however.

Lemma 4 (Dyson-Type Inequality) Let �y = (s, y3) ∈ R
3. For R > R0, we have for all ψ

∫

|�x−�y|≤R

e−|�x|2 (|∂x3ψ(�x)|2 + |∂z̄ψ(�x)|2 + Wa(�x − �y)|ψ(�x)|2)dx

≥ 4πa(R0)e
−(|y3|+R)2+|s|2

∣∣∣∣
1

4πR2

∫

|�x−�y|=R

e−s̄zψ(�x)dx

∣∣∣∣
2

. (32)

Note that if ψ ∈ B1, one has

1

4πR2

∫

|�x−�y|=R

e−s̄zψ(�x)dx = e−|s|2ψ(�y),

and the right side of (32) equals 4πa(R0)e
−(|y3|+R)2−|s|2 |ψ(�y)|2 which is precisely

4πa(R0)〈ψ,δyψ〉B1 when R = 0.

Proof of Lemma 4 Let g(�x) = e−s̄zψ(�x + �y). Using that Wa ≥ Wa,R0 , we have to show that

∫

|�x|≤R

e−|z|2−(x3+y3)2 (|∂x3g(�x)|2 + |∂z̄g(�x)|2 + Wa,R0(�x)|g(�x)|2) dx

≥ 4πa(R0)e
−(|y3|+R)2

∣∣∣∣
1

4πR2

∫

|�x|=R

g(�x)dx

∣∣∣∣
2

. (33)

Since |z|2 + (x3 + y3)2 ≤ (|y3| + R)2 in the integrand on the left, this will follow if we can
show that

∫

|�x|≤R

(|∂x3g(�x)|2 + |∂z̄g(�x)|2 + Wa,R0(�x)|g(�x)|2)dx

≥ 4πa(R0)

∣∣∣∣
1

4πR2

∫

|�x|=R

g(�x)dx

∣∣∣∣
2

. (34)
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Let now fa,R0 be the solution of the zero-energy scattering equation −�fa,R0 +Wa,R0fa,R0 =
0, subject to the normalization lim|�x|→∞ fa,R0(�x) = 1. Since fa,R0 is real-valued, |∂z̄fa,R0 |2 =
|∂x1fa,R0 |2 + |∂x2fa,R0 |2, and hence

∫

|�x|≤R

(|∂x3fa,R0(�x)|2 + |∂z̄fa,R0(�x)|2 + Wa,R0(�x)|fa,R0(�x)|2)dx ≤ 4πa(R0).

The Cauchy-Schwarz inequality implies that

∫

|�x|≤R

(|∂x3g(�x)|2 + |∂z̄g(�x)|2 + Wa,R0(�x)|g(�x)|2) dx

≥ 1

4πa(R0)

∣∣∣∣
∫

|�x|≤R

(
∂x3fa,R0∂x3g + ∂zfa,R0∂z̄g + Wa,R0fa,R0g

)∣∣∣∣
2

. (35)

Using partial integration, the zero-energy scattering equation as well as the fact that
|∇fa,R0(�x)| = a/|�x| for |�x| ≥ R0 this yields (34). �

As an immediate corollary, we see that for any non-negative function ρ supported on
[R0,R] with

∫ R

R0
ρ ≤ 1,

∫

|�x−�y|≤R

e−|�x|2 (|∂x3ψ(�x)|2 + |∂z̄ψ(�x)|2 + Wa(�x − �y)|ψ(�x)|2)dx

≥ 4πa(R0)e
−(|y3|+R)2+|s|2

∫ R

R0

drρ(r)

∣∣∣∣
1

4πr2

∫

|�x−�y|=r

e−s̄zψ

∣∣∣∣
2

. (36)

We shall apply this inequality to the Hamiltonian HN
ω,a , for each particle separately, con-

sidering the other N − 1 particles as fixed. Consider first particle one, and assume that all
particles k ≥ 2 are located at a distance ≥ 2R from each other, i.e., that |�xk − �x�| ≥ 2R for
all k, � = 2, . . . ,N . Then we get, for all functions F(�x1, . . . , �xN),

∫

R3
dx1e

−|�x1|2
(

|∂x3
1
F(�x1, . . . , �xN)|2 + |∂z̄1F(�x1, . . . , �xN)|2

+
N∑

j=2

Wa(�xj − �x1)|F(�x1, . . . , �xN |2
)

≥ 4πa(R0)

N∑

j=2

e
−(|x3

j
|+R)2+|zj |2

∫ R

R0

drρ(r)

∣∣∣∣∣
1

4πr2

∫

|�x1−�xj |=r

e−zj z1F(�x1, . . . , �xN)dx1

∣∣∣∣∣

2

.

In general, we can get the same bound if we only retain on the right side the �xj ’s for j =
2, . . . ,N which are at a distance ≥ 2R from all the others. Using (26) and (31), we conclude
that, for any 0 ≤ θ ≤ 1,

HN
ω,a ≥

N∑

j=1

(
θ (h0)j + ω(�e3 · �L)j

) + 4πa(R0)(1 − θ)
∑

1≤i<j≤N

Uij , (37)
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where the potential Uij is defined as

〈	,U12	〉
=

∫
dx2 · · ·

∫
dxNe−|�x2|2e−(|x3

2 |+R)2+|z2|2e−∑N
k=3 |�xk |2

×
N∏

k=3

χ|�xk−�x2|≥2R

∫ R

R0

drρ(r)

∣∣∣∣
1

4πr2

∫

|�x1−�x2|=r

e−z2z1F(�x1, . . . , �xN)dx1

∣∣∣∣
2

, (38)

with F(�x1, . . . , �xN) = πN/4	(�x1, . . . , �x2)
∏N

j=1 e|�xj |2/2 and �x1 = (z1, x
3
1 ), �x2 = (z2, x

3
2 ).

The new potential
∑

i<j Uij is a complicated N -body term which has the advantage of
being bounded, however. To be precise, the following bound holds.

Lemma 5 We have

‖U12‖ ≤ sup
r

ρ(r)

4πr2
. (39)

Proof Applying the Cauchy-Schwarz inequality to the �x1 integration, we see that

∣∣∣∣
∫

|�x1−�x2|=r

dx1e
−z2z1ψ

∣∣∣∣
2

≤
∫

|�x1−�x2|=r

dx1e
−|�x1|2 |ψ |2

∫

|�x1−�x2|=r

dx1e
|�x1|2−2 Re z̄2z1 .

It is easy to check that −(|x3
2 |+R)2 +|z2|2 +|�x1|2 − 2 Re z̄2z1 ≤ 0 for |�x1 − �x2| ≤ R. Hence

〈	,U12	〉 ≤
∫

· · ·
∫

|	(�x1, . . . , �xN)|2 ρ(|�x1 − �x2|)
4π |�x1 − �x2|2 dx1 · · ·dxN .

This proves the claim. �

In order to minimize the right side of (39), we shall choose

ρ(r) = 3r2

R3 − R3
0

for R0 ≤ r ≤ R. (40)

Note that
∫ R

R0
ρ(r)dr = 1.

We shall now apply a standard perturbation theory argument to our Hamiltonian. Let P

denote the orthogonal projection onto HN (the LLL for all the N particles), and let Q =
1 − P . Let

A =
N∑

j=1

(
θ (h0)j + ω(�e3 · �L)j

)

and

B = 4πa(R0)(1 − θ)
∑

i<j

Uij

so that the right side of (37) equals A+B . We have A = PAP +QAQ. Since B is positive
we can use the Cauchy-Schwarz inequality to get the lower bound

B ≥ (1 − δ)PBP + (
1 − δ−1

)
QBQ
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for any 0 < δ < 1. Using Lemma 5 with the choice (40) for ρ we see that

QBQ ≤ Q
6πaN(N − 1)

R3 − R3
0

.

(Recall that a(R0) ≤ a.) Moreover, for θ > ω,

QAQ ≥ Q(θ − ω) .

We therefore conclude that

A + B ≥ (1 − δ)P (A + B)P + Q

(
θ − ω − 6πaN2

δ(R3 − R3
0)

)
. (41)

In particular,

EN(ω,a) ≥ min

{
(1 − δ) infσ(A + B) �HN

, θ − ω − 6πaN2

δ(R3 − R3
0)

}

and it remains to study A + B restricted to HN .
For 	(�x1, . . . , �xN) = π−N/4

∏N

j=1 e−|�xj |2/2F(z1, . . . , zN) a bosonic function in HN , we
have

〈	,A	〉 = ω 〈F, LNF 〉BN

by (11), and

〈	,B	〉 = 2πa(R0)N(N − 1)(1 − θ)

∫
dx2e

|�x2|2−(|x3
2 |+R)2

×
∫ ∏

j≥3

χ|�xj −�x2|≥2R dxj |	(�x2, �x2, �x3, . . . , �xN)|2 (42)

where we have used that F is analytic in z1 and z2. For a lower bound, we use

∏

j≥3

χ|�xj −�x2|≥2R ≥ 1 −
∑

j≥3

χ|�xj −�x2|≤2R.

Letting

tR = 2√
π

∫ ∞

0
dte−(t+R)2 ≥ 1 − 2R√

π
,

we finally get

〈	,B	〉 ≥ 4πa(R0)(1 − θ)tR

〈
F,

(
∑

1≤i<j≤N

δij

)
F

〉

BN

− 2πa(R0)N
2(N − 1)(1 − θ)

×
∫

dx2 · · ·
∫

dxNχ|�x3−�x2|≤2R|	(�x2, �x2, �x3, . . . , �xN)|2.



1060 M. Lewin, R. Seiringer

By Carlen’s inequality (18) with p = 0 and �x2, �x4, . . . , �xN fixed, we have

|	(�x2, �x2, �x3, . . . , �xN)|2 ≤ C

∫

R3
|	(�x2, �x2, �x3, . . . , �xN)|2 dx3,

therefore
∫

R3
dx3χ|�x3−�x2|≤2R|	(�x2, �x2, �x3, . . . , �xN)|2 ≤ CR3

∫

R3
d �x3|	(�x2, �x2, �x3, . . . , �xN)|2.

We conclude that

(A + B) �HN
≥ (1 − θ)

(
tR − CR3N

)
a(R0)

a
ELLL

N (ω,a).

Our final inequality is therefore

EN(ω,a) ≥ min

{
(1 − δ)(1 − θ)(tR − CR3N)a(R0)

a
ELLL

N (ω,a),

θ − ω − 6πaN2

δ(R3 − R3
0)

}
. (43)

We now optimize constants. Recall from (24) that ELLL
N (ω,a) ≤ κ−1aN . We choose

R0 = a1/9, R3 = 2R3
0 , θ = ω + 2a1/3N and δ = 6πa1/3N such that

θ − ω − 6πaN2

δ(R3 − R3
0)

= Na1/3.

Assuming that κ ≥ a2/3 this expression is greater than ELLL
N (ω,a). Recalling (30) the final

result is then

EN(ω,a) ≥ ELLL
N (ω,a)

(
1 − ω − 1

4π

∫

|�x|≥a−8/9
W(�x)dx − C

[
a1/3N + a1/9

])
. (44)

If κ < a2/3, the choice R0 = κ1/6, R3 = 2R3
0 , θ = ω + 2Naκ−1 and δ = 6πNκ1/2 yields

the desired bound. This completes the proof of Theorem 1. �

3.3 Proof of Theorem 2

The proof is a simple consequence of the bounds in the previous subsection, together with
the right choice of parameters. If we choose R0, R and δ as above, but θ to be bigger than
the previous choice by an amount θ ′ ≥ 0, we conclude that

HN
ω,a ≥

(
1 − θ ′ − C

[
Na1/3

r
+ a1/9r

]
− 1

4π

∫

|�x|≥r1/6a−8/9
W

)
�∗H̃N

ω,a�

+ (
θ ′ + ELLL

N (ω,a)
)
Q (45)

where � = πN/4e
∑N

j=1 |�xj |2/2
P denotes the projection from L2(R3N) onto BN , and r =

min{1, κa−2/3} as in the statement of Theorem 1. Let �1 := πN/4e
∑N

j=1 |�xj |2/2
PN(κ) de-

note the projection from L2(R3N) onto the ground eigenspace of the operator LN/N2 +
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4πκIN/N , and γN(κ) = (λ2 − λ1)/λ1 > 0 where λ1 and λ2 are the first and second eigen-
values of this operator, respectively. Introducing �2 = � − �1, we have

�∗H̃N
ω,a� = �∗

1H̃
N
ω,a�1 + �∗

2H̃
N
ω,a�2 ≥ ELLL

N (ω,a)PN(κ) + �∗
2H̃

N
ω,a�2.

Note that

�∗
2H̃

N
ω,a�2 = N2ω�∗

2

(
LN

N2
+ 4π

a

Nω

IN

N

)
�2

≥ N2ω
(

1 −
∣∣∣

a

Nωκ
− 1

∣∣∣
)

�∗
2

(
LN

N2
+ 4πκ

IN

N

)
�2

≥ ELLL
N (ω,a)(1 + γN(κ))

(
1 −

∣∣∣
a

Nωκ
− 1

∣∣∣
)(

1 −
∣∣∣∣
Nωκ

a
− 1

∣∣∣∣

)
�∗

2�2.

For a, ω, and κ − a/(Nω) small enough, we obtain

HN
ω,a ≥ ELLL

N (ω,a)

(
1 − θ ′ − C

[
Na1/3

r
+ a1/9r

]
− 1

4π

∫

|�x|≥r1/6a−8/9
W

)

+ ELLL
N (ω,a)

γN(κ)

2
�∗

2�2 + θ ′Q.

Combined with the upper bound (9), this clearly yields ‖�2	
N
ω,a‖ → 0 and ‖Q	N

ω,a‖ → 0,
as was claimed. �
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